СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 24293

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 961

Определите наименьшее натуральное число, кратное 2, которое при делении на 11 с остатком дает неполное частное, равное 7.




2
Задание 2 № 92

Пусть O и O1 — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:




3
Задание 3 № 93

Среди точек вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:




4
Задание 4 № 94

Най­ди­те зна­че­ние вы­ра­же­ния .




5
Задание 5 № 245

Ука­жи­те фор­му­лу для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если a1 = 2, a2 = 5.




6
Задание 6 № 906

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.




7
Задание 7 № 187

Длины катетов прямоугольного треугольника являются корнями уравнения x2 − 9x + 12 = 0. Найдите площадь треугольника.




8
Задание 8 № 518

Вы­чис­ли­те .




9
Задание 9 № 369

Значение выражения равно:




10
Задание 10 № 940

Пря­мая a пе­ре­се­ка­ет плос­кость α в точке A и об­ра­зу­ет с плос­ко­стью угол 60°. Точка B лежит на пря­мой a, при­чем AB = . Най­ди­те рас­сто­я­ние от точки B до плос­ко­сти α.




11
Задание 11 № 221

На диа­грам­ме по­ка­за­но ко­ли­че­ство по­ку­па­те­лей в пе­ри­од про­ве­де­ния акции в ма­га­зи­не. В какой день ко­ли­че­ство по­ку­па­те­лей то­ва­ра по акции со­ста­ви­ло менее 30% от ко­ли­че­ства всех по­ку­па­те­лей в этот день?




12
Задание 12 № 342

Упро­сти­те вы­ра­же­ние .




13
Задание 13 № 373

Параллельно стороне треугольника, равной 10, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 6. Найдите отношение площади полученной трапеции к площади исходного треугольника.




14
Задание 14 № 854

Соб­ствен­ная ско­рость ка­те­ра в 6 раз боль­ше ско­ро­сти те­че­ния реки. Рас­сто­я­ние по реке от пунк­та A до пунк­та B плот про­плыл за время t1, а катер — за время t2. Тогда верна фор­му­ла:




15
Задание 15 № 75

Ко­рень урав­не­ния равен:




16
Задание 16 № 106

ABCDA1B1C1D1 — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что . Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.




17
Задание 17 № 1140

Най­ди­те сумму кор­ней урав­не­ния при­над­ле­жа­щих про­ме­жут­ку




18
Задание 18 № 738

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния равна (равен):




19
Задание 19 № 679

Най­ди­те сумму целых ре­ше­ний (ре­ше­ние, если оно един­ствен­ное) си­сте­мы не­ра­венств


Ответ:

20
Задание 20 № 740

Найдите произведение большего корня на количество корней уравнения


Ответ:

21
Задание 21 № 951

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

22
Задание 22 № 472

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна .


Ответ:

23
Задание 23 № 413

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1 и 2 со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 3 м, M2O = 11 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?


Ответ:

24
Задание 24 № 1081

Пусть x0 — наи­боль­ший ко­рень урав­не­ния тогда зна­че­ние вы­ра­же­ния равно ...


Ответ:

25
Задание 25 № 745

Най­ди­те про­из­ве­де­ние суммы кор­ней урав­не­ния на их ко­ли­че­ство.


Ответ:

26
Задание 26 № 986

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства


Ответ:

27
Задание 27 № 807

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния


Ответ:

28
Задание 28 № 1018

Най­ди­те про­из­ве­де­ние наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства


Ответ:

29
Задание 29 № 209

Найдите значение выражения


Ответ:

30
Задание 30 № 690

Трое рабочих (не все одинаковой квалификации) выполнили некоторую работу, работая поочередно. Сначала первый из них проработал часть времени, необходимого двум другим для выполнения всей работы. Затем второй проработал часть времени, необходимого двум другим для выполнения всей работы. И, наконец, третий проработал часть времени, необходимого двум другим для выполнения всей работы. Во сколько раз быстрее работа была бы выполнена, если бы трое рабочих работали одновременно? В ответ запишите найденное число, умноженное на 20.


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.