СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 33126

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 661

Даны дроби Укажите дробь, которая равна дроби




2
Задание 2 № 1059

Выразите 648 см 6 мм в метрах с точностью до сотых.




3
Задание 3 № 1126

Две окружности с центрами A и B касаются в точке M. Найдите длину отрезка CN, если и диаметр большей окружности на 25 больше радиуса меньшей окружности.




4
Задание 4 № 964

Значение выражения равно:




5
Задание 5 № 245

Укажите формулу для нахождения n-го члена арифметической прогрессии (an), если a1 = 2, a2 = 5.




6
Задание 6 № 216

Укажите номер рисунка, на котором показано множество решений системы неравенств




7
Задание 7 № 697

Длины катетов прямоугольного треугольника являются корнями уравнения x2 − 9x + 6 = 0. Найдите площадь треугольника.




8
Задание 8 № 1035

Среди данных утверждений укажите номер верного.




9
Задание 9 № 579

Одна из сторон прямоугольника на 7 см длиннее другой, а его площадь равна 98 см2. Уравнение, одним из корней которого является длина меньшей стороны прямоугольника, имеет вид:




10
Задание 10 № 1037

Результат упрощения выражения при −1 < x < 1 имеет вид:




11
Задание 11 № 1001

На круговой диаграмме показано распределение посевных площадей под зерновые культуры в агрохозяйстве. Сколько гектаров отведено под овес, если рожью засеяно на 175 га меньше, чем ячменем?




12
Задание 12 № 42

Упростите выражение .




13
Задание 13 № 1100

Купили c ручек по цене 1 руб. 2 коп. за штуку и 215 тетрадей по цене x коп. за штуку. Составьте выражение, которое определяет, сколько рублей стоит покупка.




14
Задание 14 № 254

Из пунктов A и B, расстояние между которыми 160 км, одновременно навстречу друг другу выехали два автомобиля с постоянными и неравными скоростями: из пункта A — со скоростью a км/ч, из пункта B — со скоростью b км/ч. Через некоторое время автомобили встретились. Составьте выражение, определяющее расстояние (в километрах) от пункта A до места встречи автомобилей.




15
Задание 15 № 45

Количество целых решений неравенства на промежутке равно:




16
Задание 16 № 766

Расположите числа в порядке возрастания.




17
Задание 17 № 377

Расположите числа в порядке возрастания.




18
Задание 18 № 888

Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 10 и AO = 6, то длина стороны AC равна:




19
Задание 19 № 1009

Для покраски стен общей площадью 250 м2 планируется закупка краски. Объем и стоимость банок с краской приведены в таблице.

 

Объем банки

(в литрах)

Стоимость банки с краской

(в рублях)

2,5

85 000

10

270 000

 

Какую минимальную сумму (в рублях) потратят на покупку необходимого количества краски, если ее расход составляет 0,14 л/м2?


Ответ:

20
Задание 20 № 1107

Конфеты в коробки упаковываются рядами, причем количество конфет в каждом ряду на 4 больше, чем количество рядов. Дизайн коробки изменили, при этом добавили 2 ряда, а в каждом ряду добавили по 1 конфете. В результате количество конфет в коробке увеличилось на 31. Сколько конфет упаковывалось в коробку первоначально?


Ответ:

21
Задание 21 № 291

Сумма корней (или корень, если он один) уравнения равна ...


Ответ:

22
Задание 22 № 562

Пусть (x;y) — целочисленное решение системы уравнений

 

 

Найдите сумму x+y.


Ответ:

23
Задание 23 № 113

Найдите наибольшее целое решение неравенства .


Ответ:

24
Задание 24 № 504

Площадь прямоугольника ABCD равна 35. Точки M, N, P, Q — середины его сторон. Найдите площадь четырехугольника между прямыми AN, BP, CQ, DM.


Ответ:

25
Задание 25 № 565

Геометрическая прогрессия со знаменателем 6 содержит 10 членов. Сумма всех членом прогрессии равна 42. Найдите сумму всех членов прогрессии с четными номерами.


Ответ:

26
Задание 26 № 356

Найдите значение выражения: .


Ответ:

27
Задание 27 № 267

Найдите (в градусах) сумму корней уравнения на промежутке (110°; 170°).


Ответ:

28
Задание 28 № 418

В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α. Боковая сторона образует с плоскостью α угол, синус которого равен . Найдите 36sinβ, где β — угол между диагональю трапеции и плоскостью α.


Ответ:

29
Задание 29 № 1019

Точка A движется по периметру треугольника KMP. Точки K1, M1, P1 лежат на медианах треугольника KMP и делят их в отношении 10 : 3, считая от вершин. По периметру треугольника K1M1P1 движется точка B со скоростью, в шесть раз большей, чем скорость точки A. Сколько раз точка B обойдет по периметру треугольник K1M1P1 за то время, за которое точка A два раза обойдет по периметру треугольник KMP?


Ответ:

30
Задание 30 № 930

Объем прямоугольного параллелепипеда ABCDA1B1C1D1 равен 1728. Точка P лежит на боковом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вершину D и середину бокового ребра AA1 проведена секущая плоскость, которая делит прямоугольный параллелепипед на две части. Найдите объём большей из частей.


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.