СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 33602

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.0:00:00
1
Задание 1 № 241

Определите наименьшее натуральное число, кратное 2, которое при делении на 15 с остатком дает неполное частное, равное 3.




2
Задание 2 № 32

На клетчатой бумаге с клетками размером 1 см х 1 см изображён параллелограмм. Найдите его площадь в квадратных сантиметрах.




3
Задание 3 № 933

Используя рисунок, определите верное утверждение и укажите его номер.




4
Задание 4 № 94

Найдите значение выражения .




5
Задание 5 № 1128

Укажите номер выражения, являющегося одночленом восьмой степени:

а)       б)       в)       г)       д)



6
Задание 6 № 1334

Окружность задана уравнением Укажите верное утверждения.




7
Задание 7 № 967

Найдите площадь фигуры, изображенной на рисунке.




8
Задание 8 № 188

Пусть a = 5,4; b = 3,2 · 101. Найдите произведение ab и запишите его в стандартном виде.




9
Задание 9 № 249

Найдите значение выражения НОК(12, 18, 36)+НОД(39,52).




10
Задание 10 № 1133

Решением системы неравенств является:




11
Задание 11 № 1068

На клетчатой бумаге с клетками размером 1 см х 1 см изображена фигура. Известно, что площадь этой фигуры составляет 32% площади некоторой трапеции. Найдите площадь трапеции в квадратных сантиметрах.




12
Задание 12 № 222

Укажите номер рисунка, на котором представлен эскиз графика функции y = 1 − (x + 3)2.




13
Задание 13 № 1166

Найдите значение выражения




14
Задание 14 № 914

Из пунктов A и B, расстояние между которыми 130 км, одновременно навстречу друг другу выехали два автомобиля с постоянными и неравными скоростями: из пункта A — со скоростью a км/ч, из пункта B — со скоростью b км/ч. Через некоторое время автомобили встретились. Составьте выражение, определяющее расстояние (в километрах) от пункта B до места встречи автомобилей.




15
Задание 15 № 75

Корень уравнения равен:




16
Задание 16 № 676

Расположите числа в порядке возрастания.




17
Задание 17 № 197

Через вершину A прямоугольного треугольника ABC (∠C = 90°) проведен перпендикуляр AK к его плоскости. Найдите расстояние от точки K до прямой BC, если AK = 2, AB = 4, BC = 




18
Задание 18 № 228

Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 10, то длина стороны AC равна:




19
Задание 19 № 649

Автомобиль проехал некоторое расстояние, израсходовав 12 л топлива. Расход топлива при этом составил 8 л на 100 км пробега. Затем автомобиль существенно увеличил скорость, в результате чего расход топлива вырос до 10 л на 100 км. Сколько литров топлива понадобится автомобилю, чтобы проехать такое же расстояние?


Ответ:

20
Задание 20 № 740

Найдите произведение большего корня на количество корней уравнения


Ответ:

21
Задание 21 № 771

В окружность радиусом 6 вписан треугольник, длины двух сторон которого равны 9 и 8. Найдите длину высоты треугольника, проведенной к его третьей стороне.


Ответ:

22
Задание 22 № 1319

Найдите сумму корней (корень, если он единственный) уравнения


Ответ:

23
Задание 23 № 1110

В параллелограмме с острым углом 45° точка пересения диагоналей удалена от прямых, содержащих неравные стороны, на расстояния и 5. Найдите площадь параллелограмма.


Ответ:

24
Задание 24 № 594

Найдите количество корней уравнения на промежутке .


Ответ:

25
Задание 25 № 355

Четырёхугольник ABCD вписан в окружность. Если , то градусная мера между прямыми AB и CD равна ...


Ответ:

26
Задание 26 № 266

Найдите сумму наименьшего и наибольшего целых решений неравенства


Ответ:

27
Задание 27 № 777

Найдите сумму целых решений неравенства


Ответ:

28
Задание 28 № 568

Из точки А проведены к окружности радиусом касательная AB (B — точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 15S.


Ответ:

29
Задание 29 № 119

Если , то значение выражения равно ...


Ответ:

30
Задание 30 № 480

Найдите произведение корней уравнения .


Ответ:
Времени прошло:0:00:00
Времени осталось:3.0:00:00
Завершить тестирование, свериться с ответами, увидеть решения.