СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 35188

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:00:00
1
Задание 1 № 1329

На координатной прямой отмечены точки А, В, С, D, F. Числу на координатной прямой может соответствовать точка:




2
Задание 2 № 1299

Даны системы неравенств. Укажите номер системы неравенств, которая равносильна системе неравенств




3
Задание 3 № 363

Если — верная пропорция, то число x равно:




4
Задание 4 № 424

Даны квадратные уравнения:

Укажите уравнение, которое не имеет корней.




5
Задание 5 № 875

Вычислите




6
Задание 6 № 396

Результат упрощения выражения имеет вид:




7
Задание 7 № 427

Решите неравенство .




8
Задание 8 № 878

Даны числа: 0,35 · 106; 3,5 · 105; 3500; 35 · 10−4; 0,0035. Укажите число, записанное в стандартном виде.




9
Задание 9 № 1337

От пристани одновременно отправляются по течению реки катер(I) и против течения реки моторная лодка (II). На рисунке приведены графики их движения. Определите скорость течения реки (в км/ч), если катер и моторная ложка имеют одинаковые собственные скорости.




10
Задание 10 № 250

Прямая a пересекает плоскость α в точке A и образует с плоскостью угол 60°. Точка B лежит на прямой a, причем AB = . Найдите расстояние от точки B до плоскости α.




11
Задание 11 № 761

Даны два числа. Известно, что одно из них больше другого на 6. Какому условию удовлетворяет большее число x, если сумма квадратов этих чисел не меньше удвоенного квадрата большего числа?




12
Задание 12 № 1340

В треугольнике ABC Найдите длину стороны CB.




13
Задание 13 № 913

Сократите дробь




14
Задание 14 № 284

Сумма координат точки пересечения прямых, заданных уравнениями и , равна:




15
Задание 15 № 795

На координатной плоскости изображен тупоугольный треугольник ABC с вершинами в узлах сетки (см. рис.). Косинус угла ABC этого треугольника равен:




16
Задание 16 № 616

ABCDA1B1C1D1 — прямоугольный параллелепипед такой, что AB = 16, AD = 3. Через середины ребер AA1 и BB1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания ABCD. Найдите площадь сечения параллелепипеда этой плоскостью.




17
Задание 17 № 1007

График функции, заданной формулой y = kx + b, симметричен относительно начала координат и проходит через точку A (2; 6). Значение выражения k + b равно:




18
Задание 18 № 648

Корень уравнения

 

 

(или сумма корней, если их несколько) принадлежит промежутку:




19
Задание 19 № 229

Витя купил в магазине некоторое количество тетрадей, заплатив за них 24 тысячи рублей. Затем он обнаружил, что в другом магазине тетрадь стоит на 1 тысячу рублей меньше, поэтому, заплатив такую же сумму, он мог бы купить на 2 тетради больше. Сколько тетрадей купил Витя?


Ответ:

20
Задание 20 № 1107

Конфеты в коробки упаковываются рядами, причем количество конфет в каждом ряду на 4 больше, чем количество рядов. Дизайн коробки изменили, при этом добавили 2 ряда, а в каждом ряду добавили по 1 конфете. В результате количество конфет в коробке увеличилось на 31. Сколько конфет упаковывалось в коробку первоначально?


Ответ:

21
Задание 21 № 81

Точки А(1;2), B(5;6) и C(8;6) — вершины трапеции ABCD (AD||BC). Найдите сумму координат точки D, если .


Ответ:

22
Задание 22 № 1049

Найдите произведение корней (корень, если он единственный) уравнения


Ответ:

23
Задание 23 № 1050

В параллелограмме с острым углом 45° точка пересения диагоналей удалена от прямых, содержащих неравные стороны, на расстояния и 2. Найдите площадь параллелограмма.


Ответ:

24
Задание 24 № 714

Три числа составляют геометрическую прогрессию, в которой . Если второй член прогрессии уменьшить на 12, то полученные три числа в том же порядке опять составят геометрическую прогрессию. Если третий член новой прогрессии уменьшить на 32, то полученные числа составят арифметическую прогрессию. Найдите сумму исходных чисел.


Ответ:

25
Задание 25 № 805

Каждое боковое ребро четырехугольной пирамиды образует с ее высотой, равной угол 30°. Основанием пирамиды является прямоугольник с углом 30° между диагоналями. Найдите объем пирамиды V, в ответ запишите значение выражения .


Ответ:

26
Задание 26 № 986

Найдите сумму наименьшего и наибольшего целых решений неравенства


Ответ:

27
Задание 27 № 537

Найдите сумму целых значений x, принадлежащих области определения функции

 

.

 


Ответ:

28
Задание 28 № 358

В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α. Боковая сторона образует с плоскостью α угол, синус которого равен . Найдите 45sinβ, где β — угол между диагональю трапеции и плоскостью α.


Ответ:

29
Задание 29 № 539

Из двух растворов с различным процентным содержанием спирта массой 300 г и 700 г отлили по одинаковому количеству раствора. Каждый из отлитых растворов долили в остаток другого раствора, после чего процентное содержание спирта в обоих растворах стало одинаковым. Найдите, сколько раствора (в граммах) было отлито из каждого раствора.


Ответ:

30
Задание 30 № 360

Основанием пирамиды SABCD является ромб со стороной и углом BAD, равным . Ребро SD перпендикулярно основанию, а ребро SB образует с основанием угол . Найдите радиус R сферы, проходящей через точки A, B, C и середину ребра SB. В ответ запишите значение выражения R2.


Ответ:
Завершить тестирование, свериться с ответами, увидеть решения.