СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 35191

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:00:00
1
Задание 1 № 691

Даны дроби Укажите дробь, которая равна дроби




2
Задание 2 № 722

Укажите номер рисунка, на котором изображены фигуры, симметричные относительно прямой l.




3
Задание 3 № 1156

Две окружности с центрами A и B касаются в точке M. Найдите длину отрезка CN, если и диаметр большей окружности на 20 больше радиуса меньшей окружности.




4
Задание 4 № 1127

На рисунке две прямые пересекаются в точке О. Если то угол BOC равен:




5
Задание 5 № 965

Укажите формулу для нахождения n-го члена арифметической прогрессии (an), если a1 = 4, a2 = 7.




6
Задание 6 № 786

Укажите номер рисунка, на котором показано множество решений системы неравенств




7
Задание 7 № 637

Образующая конуса равна 34 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.




8
Задание 8 № 398

От листа жести, имеющего форму квадрата, отрезали прямоугольную полосу шириной 8 дм, после чего площадь оставшейся части листа оказалась равной 9 дм2. Длина стороны квадратного листа (в дециметрах) была равна:




9
Задание 9 № 399

Значение выражения равно:




10
Задание 10 № 730

Из точки A к окружности проведены касательные AB и AC и секущая AM, проходящая через центр окружности O. Точки B, С, M лежат на окружности (см. рис.). Известно, что BK = 3, AC = 8. Найдите длину отрезка AK.




11
Задание 11 № 191

Даны два числа. Известно, что одно из них меньше другого на 6. Какому условию удовлетворяет меньшее число x, если его удвоенный квадрат не больше суммы квадратов этих чисел?




12
Задание 12 № 972

Длины всех сторон треугольника являются целыми числами. Если длина одной стороны равна 1, а другой — 11, то периметр треугольника равен:




13
Задание 13 № 1310

Укажите номера уравнений, которые не имеют действительных корней.

 

1) x2 = 49;2) 3) x2 + 49 = 0
4) x2 + 49x = 0;5) x2 + x − 49=0



14
Задание 14 № 44

Сумма координат точки пересечения прямых, заданных уравнениями и , равна:




15
Задание 15 № 825

На координатной плоскости изображен тупоугольный треугольник ABC с вершинами в узлах сетки (см. рис.). Косинус угла ABC этого треугольника равен:




16
Задание 16 № 1199

Площадь боковой поверхности цилиндра равна а его объем равен Найдите высоту цилиндра.




17
Задание 17 № 1345

Вычислите сумму наибольшего отрицательного и наименьшего положительного корней уравнения




18
Задание 18 № 258

Сумма всех натуральных решений неравенства равна:




19
Задание 19 № 1009

Для покраски стен общей площадью 250 м2 планируется закупка краски. Объем и стоимость банок с краской приведены в таблице.

 

Объем банки

(в литрах)

Стоимость банки с краской

(в рублях)

2,5

85 000

10

270 000

 

Какую минимальную сумму (в рублях) потратят на покупку необходимого количества краски, если ее расход составляет 0,14 л/м2?


Ответ:

20
Задание 20 № 530

Найдите количество всех целых решений неравенства .


Ответ:

21
Задание 21 № 501

Точки А(2;3), B(7;5) и C(10;5) — вершины трапеции ABCD (AD||BC). Найдите сумму координат точки D, если .


Ответ:

22
Задание 22 № 52

Найдите сумму целых решений неравенства .


Ответ:

23
Задание 23 № 1351

В трапеции ABCD с основаниями AD > BC точка пересечения ее диагоналей делит диагональ AC на отрезки 6 и 3. Найдите площадь трапеции, если площадь треугольника ABC равна 12.


Ответ:

24
Задание 24 № 84

Площадь прямоугольника ABCD равна 20. Точки M, N, P, Q — середины его сторон. Найдите площадь четырехугольника между прямыми AN, BP, CQ, DM.


Ответ:

25
Задание 25 № 925

Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна и плоский угол при вершине


Ответ:

26
Задание 26 № 866

Найдите (в градусах) наибольший отрицательный корень уравнения


Ответ:

27
Задание 27 № 897

Найдите количество корней уравнения


Ответ:

28
Задание 28 № 508

Прямоугольный треугольник с катетами, равными и , вращается вокруг оси, содержащей его гипотенузу. Найдите значение выражения , где — объём фигуры вращения.


Ответ:

29
Задание 29 № 509

Из двух растворов с различным процентным содержанием спирта массой 200 г и 600 г отлили по одинаковому количеству раствора. Каждый из отлитых растворов долили в остаток другого раствора, после чего процентное содержание спирта в обоих растворах стало одинаковым. Найдите, сколько раствора (в граммах) было отлито из каждого раствора.


Ответ:

30
Задание 30 № 420

Основанием пирамиды SABCD является ромб со стороной и углом BAD, равным . Ребро SD перпендикулярно основанию, а ребро SB образует с основанием угол . Найдите радиус R сферы, проходящей через точки A, B, C и середину ребра SB. В ответ запишите значение выражения R2.


Ответ:
Завершить тестирование, свериться с ответами, увидеть решения.