СДАМ ГИА: РЕШУ ЦТ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 35194

Если вы занимаетесь самостоятельно, решите задания в тетради, на следующем шаге сверьтесь с решениями и оцените себя. Если вариант задан учителем, вы можете вписать или загрузить в систему решения заданий. Учитель сможет отметить ошибки, прокомментировать и оценить загруженные решения. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:00:00
1
Задание 1 № 751

Даны дроби Укажите дробь, которая равна дроби




2
Задание 2 № 992

На рисунке изображен треугольник ABC, в котором ∠ACB = 37°, ∠AMN = 107°. Используя данные рисунка, найдите градусную меру угла BAC.




3
Задание 3 № 663

Прямые a и b, пересекаясь, образуют четыре угла. Известно, что сумма трех углов равна 220°. Найдите градусную меру меньшего угла.




4
Задание 4 № 34

Если 15% некоторого числа равны 33, то 20% этого числа равны:




5
Задание 5 № 185

Вычислите




6
Задание 6 № 1303

Окружность задана уравнением Укажите номер верного утверждения.




7
Задание 7 № 37

Сумма корней (или корень, если он один) уравнения равна:




8
Задание 8 № 908

Найдите сумму всех целых значений функции y = f(x), заданной графиком на промежутке (-5; 5) (см.рис.).




9
Задание 9 № 1306

От пристани одновременно отправляются по течению реки катер(I) и против течения реки моторная лодка (II). На рисунке приведены графики их движения. Определите скорость течения реки (в км/ч), если катер и моторная ложка имеют одинаковые собственные скорости.




10
Задание 10 № 1307

Пусть x1 и x2 —  корни уравнения Найдите число q, при котором выполняется равенство




11
Задание 11 № 401

Найдите значение выражения .




12
Задание 12 № 72

На одной чаше уравновешенных весов лежат 3 яблока и 1 груша, на другой — 2 яблока, 2 груши и гирька весом 20 г. Каков вес одного яблока (в граммах), если все фрукты вместе весят 780 г? Считайте все яблоки одинаковыми по весу и все груши одинаковыми по весу.




13
Задание 13 № 43

Параллельно стороне треугольника, равной 5, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 2. Найдите отношение площади полученной трапеции к площади исходного треугольника.




14
Задание 14 № 524

Упростите выражение .




15
Задание 15 № 1198

Окружность задана уравнением и проходит через вершину параболы Найдите радиус этой окружности.




16
Задание 16 № 706

Расположите числа в порядке возрастания.




17
Задание 17 № 227

График функции, заданной формулой y = kx + b, симметричен относительно оси Oy и проходит через точку A Значение выражения k + b равно:




18
Задание 18 № 858

Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 12, то длина стороны AC равна:




19
Задание 19 № 229

Витя купил в магазине некоторое количество тетрадей, заплатив за них 24 тысячи рублей. Затем он обнаружил, что в другом магазине тетрадь стоит на 1 тысячу рублей меньше, поэтому, заплатив такую же сумму, он мог бы купить на 2 тетради больше. Сколько тетрадей купил Витя?


Ответ:

20
Задание 20 № 350

Диагонали трапеции равны 12 и 5. Найдите площадь трапеции, если ее средняя линия равна 6,5.


Ответ:

21
Задание 21 № 621

Основание остроугольного равнобедренного треугольника равно 8, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.


Ответ:

22
Задание 22 № 1109

Найдите произведение корней (корень, если он единственный) уравнения


Ответ:

23
Задание 23 № 1320

В трапеции ABCD с основаниями AD > BCточка пересечения ее диагоналей делит диагональ AC на отрезки 6 и 4. Найдите площадь трапеции, если площадь треугольника ABC равна 20.


Ответ:

24
Задание 24 № 1321

Найдите произведение наибольшего целого решения на количество всех целых решений неравенства


Ответ:

25
Задание 25 № 1322

Функция y = f(x) определена на множестве действительных чисел R, является нечетной, периодической с периодом T = 10 и при задается формулой. Найдите произведение абсцисс точек пересечения прямой y = 12 и графика функции y = f(x) на промежутке [ −13; 7].


Ответ:

26
Задание 26 № 836

Найдите (в градусах) наибольший отрицательный корень уравнения


Ответ:

27
Задание 27 № 1054

Найдите площадь полной поверхности прямой треугольной призмы, описанной около шара, если площадь основания призмы равна 7,5.


Ответ:

28
Задание 28 № 208

Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины — на ее основании. Длина стороны основания пирамиды равна 2, высота пирамиды — 6. Найдите площадь S поверхности куба. В ответ запишите значение выражения 4S.


Ответ:

29
Задание 29 № 89

Из двух растворов с различным процентным содержанием спирта массой 100 г и 900 г отлили по одинаковому количеству раствора. Каждый из отлитых растворов долили в остаток другого раствора, после чего процентное содержание спирта в обоих растворах стало одинаковым. Найдите, сколько раствора (в граммах) было отлито из каждого раствора.


Ответ:

30
Задание 30 № 240

Найдите сумму всех трехзначных чисел, которые при делении на 4 и на 6 дают в остатке 1, а при делении на 9 дают в остатке 4.


Ответ:
Завершить тестирование, свериться с ответами, увидеть решения.